Your vision becomes our future.

Best Partner in the Plastic Industry

石田田田

LFI

STR.

IKP

IKP-Patented Metal and Plastics Adhesion Technology

[MPA]

- ✓ Metal & Plastics Adhesion technology
- The technology for integrating metal and resin by mechanical bonding alone. After chemical processing of metal surface treatment, the resin penetrates into the hole when the insert is ejected.

Contribute to product & parts innovation

Business model and services

- Contracted processing business : Chemical treatment of metal surface
- Part business : Metal treatment + Injection molding products
- Technical partnership business: Royalty contract for MPA technology

Mechanical adhesion exerted Adhesion by the penetration of resin into the holes

MPA Technology Process

Effects of MPA Technology

CASE

Formation of bosses and ribs on the metal body

Direct adhesion of metal body and plastics

Aluminum + Plastic + Aluminum adhesion

HOW

Tape or Bonding Process skipped

Water & Helium gas proof

Alternative to Aluminum Welding

Advantages of MPA Technology

Long-term storage and **long-distance logistics** with common packaging

2 Productivity increase and cost reduction by shortened process

3 Various options for materials for injection molding- Plastics, Silicone, Epoxy, Rubber etc.

(4)

(5)

Relatively low effect of releasing agents and contamination

Al Anodizing : Enhanced tensile force

MPA vs Conv. process

MPA is efficient and effective compared to other processes.

Applicable Fields of MPA Technology

Preparation for marketability with small size, slimness, and light weight

Flexible design that is not possible in welding and bonding processes

Productivity increase and cost reduction by shortened processes

Structural stability and various options for resin

Major Facilities

- Mass production line of MPA : establishment in December 2014
- Automated production facility
- MPA Mass Production and laboratory

Capacity

• 40,000EA/day surface treatment based on 5-inch mobile case

Insert Molding condition

Cylinder temperature

Same as applied resin injection condition

Mold temperature

Injection core actual temperature conditions above 130°C (In the case of mold upper temperature condition, 110 to 130°C can be adjusted.)

Injection pressure

The cylinder pressure is higher than the injection conditions of the applied resin. Adjust the packing pressure as well.

Other Conditions

Same as applied resin injection condition

Adhesion guide

Available metals: Aluminum, copper, iron, magnesium, SUS, titanium etc. Various materials for adhesion: PPS, PPA, PBT, PP, PA, Olefin, Silicone, Rubber, Elastomer

Excellent	Good	Normal	Non-compliance
Ø	0	\bigtriangleup	Х

Metals	Aluminum	aluminum diecasting	Stainless	Copper	magnesium	titanium	Steel
materials							
РВТ	Ô	Ô	Ô	Ô	0	\bigcirc	Ô
PPS	Ô	Ô	Ô	\bigcirc			Ô
PPA	Ô	Ô	\bigcirc				Ô
PA	Ô	Ô	\bigcirc				Ô
РР	Ô	Ô					

